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OVERVIEW OF ARGUMENT

“In terms of studying social complexity, two of the most dominant methodological
camps are case-based methods (CBM) and agent-based modelling (ABM).

*Notwithstanding significant epistemological similarities (i.e., cases and agents are
often equivalent), both camps have yet to harness the other’s strengths, which has
limited both approaches in terms of studying dynamics.
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“For example, CBM rarely focuses on the interactions amongst cases or their
corresponding emergent behaviour; or how complex configurations might change due
to different counterfactual scenarios.

“In turn, ABM has yet to use CBM to develop its agents or their rules; let alone use
CBM to hypothesize how agents might interact based on different combinations of
complex causal configurations.

*The purpose of my fellowship (and the papers | am writing with Pete and Corey) was
to explore how the links between case-based methods and agent-based modeling
could be developed. This results in two key projects:

=Articulating the key ways in which CBM and ABM can be linked.
"And, in turn, developing our R-Studio statistical package, COMPLEX-IT.
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ASSERTION 1:

Conventional statistics are significantly limited in their capacity to study social
dynamics, let alone complex global-temporal dynamics.

"Part of the problem is the static nature of these methods.

"The other is their focus on aggregates (bell shaped) distributions; rather than
different and multiple trends.

"And their failure to study cases and their respective profile — which is the stuff of our
globalized, digitally saturated, big data world.
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ASSERTION 2

*The methods of computational modeling and complex system offer useful
solutions to these problems.

"Albeit only if one approaches them critically, as not all methods are equally
useful for modeling and data mining social complexity -- which is one of the
major points of Byrne and Callaghan 201 3.

"The two of interest to us here are
"case-based methods (CBM)

="agent-based modeling (ABM)
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*An agent-based model (ABM) is a class of computational models for simulating the
actions and interactions of autonomous agents (both individual or collective entities
such as organizations or groups) with a view to assessing their effects on the system
as a whole.

“It combines elements of game theory, complex systems, emergence, computational
sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods
are used to introduce randomness.

*"Agent-based modeling is related to, but distinct from, the concept of multi-agent
systems or multi-agent simulation in that the goal of ABM is to search for
explanatory insight into the collective behavior of agents obeying simple rules,
typically in natural systems, rather than in designing agents or solving specific
practical or engineering problems.

*"Agent-based models are a kind of microscale model that simulate the simultaneous
operations and interactions of multiple agents in an attempt to re-create and predict
the appearance of complex phenomena.
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1. QCA is a method that bridges qualitative and quantitative analysis:

Most aspects of QCA require familiarity with cases, which in turn demands
in-depth knowledge. At the same time, QCA is capable of pinpointing
decisive cross-case patterns, the usual domain of quantitative analysis.
QCA'’s examination of cross-case patterns respects the diversity of cases
and their heterogeneity with regard to their different causally relevant
conditions and contexts by comparing cases as configurations.

2. QCA provides powertul tools for the analysis of causal complexity:.

With QCA, it is possible to study “INUS” conditions—causal conditions that
are insufficient but necessary parts of causal recipes which are themselves

unnecessary but sufficient. In other words, using QCA it is possible to assess
causation that is very complex, involving different combinations of causal

conditions capable of generating the same outcome. This emphasis

contrasts strongly with the “net effects” thinking that dominates conventional

guantitative social science. QCA also facilitates a form of counterfactual AB

analysis that is grounded in case-oriented research practices. "Durham

University




ASSERTION 3:

"However, as with all methods, there are several limitations to ABM and CBM.

"Also, while both methods were designed to better model complex causality;
and while the concepts of cases and agents are often epistemologically and
methodologically equivalent; these two methods have yet to be harnessed by
either camp for their respective strengths.

"The time is ripe for exploring these links as mixed-methods computational
modeling and complexity methods have become widely popular.
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ASSERTION 4:

=Cases and agents are equivalent in three important ways:

“First, they are similar in that they are based on a profile of key factors;

=Second, they are based on the concept of differences, which link to important and
different outcomes;

"Third, they are linked in time /space to each other through the concept of agency:

*Andrew Abbott: By asking what cases do, [ am assuming that the case is an agent. This
idea is somewhat foreign to some sociological traditions. We don't
generally think of the cases in the General Social Survey as agents with
intentions and histories. But it is precisely my intent to begin with the
question of what such cases “do” in the Weberian (etc.) sense of social
action. What kinds of activities do they undertake? What do they try to
accomplish? What kinds of agents are they?

*This is not to say that they are always equivalent.
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ASSERTION 5: HOW CBM HELPS ABM

Narratives and Stories about cases and social life

Bridges the qualitative-quantitative divide

Case-Based Holism

Focused on cases, which can be used to identify agents and their corre-
sponding different complex configurations (profiles of factors). In other words,
the focus is on cases, not variables, and therefore keeps ABM oriented toward its
overall goal (how variables go together) from the beginning, rather than having
to stitch things together later!

o Provide complex causality better than conventional statistics

o Focuses on the link between cases and outcomes!

o Allows for easier rule extraction

O
O
O
O

Also, one can go from ABM to CBM, using the latter to empirically validate a model.
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ASSERTION 6:HOW ABM HELPS (BM

O

The importance of counterfactuals (thinking non-observed cases)
Interactions and inter-(re)actions

How cases influence one another

How cases respond or change in relation to one another

The importance of time and trajectory

Individual case-base trajectories

How cases evolve across time

Emergent behavior and global-temporal dynamics

Supports future data collection, mainly in terms of thinking about additional factors; but also in
terms of potential interactions and other dynamics that have yet to be considered.
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Figure 2: Self-Organizing Topographical Map of Eleven Major and Minor Trends
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|
Figure 1: Eleven Major and Minor Comorbid Depression/Physical Wellbeing Trends
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Snapshot of SummitSim with a Preference Rating of 3 for all Agents
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NOTE: Rich Agents = Squares; Middle Class Agents = Stars; and Poor Agents =
Triangles. Cluster A identifies one of the dense clusters of rich agents. Cluster
B identifies one of the dense clusters of poor agents; which complexity scientists
would call a poverty trap.
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COMPLEX-IT

Designed to make the otherwise highly
complex tools and techniques of data
mining accessible to a wider and less
technical audience.

Currently, COMPLEX-IT’s suite
includes:

* k-means cluster analysis

* the Kohonen topographical neural net

* a series of data visualization techniques

* case prediction

* a tab for simulating policy scenarios

* a tab for designing an agent-based model

COMPLEX-IT also includes a step-by-step series
of questions that, concurrent with the actual
process of data analysis, take the user through
the model design process — all of which ends with
a generated report on the results of one’s study.

A free R-Studio package for
modeling complex systems from
a case-based perspective

Build the Model

1. Design Initial Model

2. Build Database and Import Cases

Test the Model
4. The Computer's Tum

Visualize Results

7. Decide Next Step

Extend the Model

8. Predict New Cases

9. Simulate Policy Scenarios

Here we will create your EXCEL database and import it into COMPLEX-IT

To help with the process, complete the following two steps.

BUILDING YOUR DATABASE:
1. Step 1:You need to get all of your cases and profile variables into a single database
2. Step 2: You need to convert this database into an EXCEL comma separated database

For help on building an EXCEL database, See CLICK HERE
For help on converting a database to EXCEL, See CLICK HERE
For help exporting an EXCEL database as CVS comma delimited, See CLICK HERE

IMPORT YOUR DATA
1. Tostart an analysis session, import your data set using the 'Browse..." button below.
2. Your data must be in the form of a csv file. Note that when you download Complex-It from GitHub, several datase
further analysis opportunities,
3. Ifthe datais successfully imported, a preview of your data will be displayed. You may also subset the data by de:

The Complex-It team extends a big thanks to the SOMbrero team from which our package draws on SOM training and visualizati

Choose CSVFile

mles2014[)ata.csv

] Header?

Separator:

Comma v

Quote:

Double Quote v

Input variables:

] Income2014

V] Employ2014

[ BirthWeight2014

[V] ZDeath2014

V] ZStage4Capped2014

VISIT: http:/ /www.personal.kent.edu/~bcastel3 /complexit.html



